铁磁谐振与单相接地有何区别
铁磁谐振:电力系统中的铁芯电感元件与电容元件构成共谐条件时,激发持续的铁磁谐振,使系统产生谐振过电压。其产生的原因主要有:
1、由线路接地、断线、断路器非同期合闸等引起的系统冲击及元件参数改变;
2、切、合空载线路、母线或系统扰动激发铁磁谐振;
3、系统在某种特殊运行方式下,参数匹配,达到了铁磁谐振条件;
4、断路器合闸三相不同期;
5、电压互感器高压保险熔断等。
铁磁谐振使得电流大大增加,电压超限,严重时将损坏设备绝缘,造成电压互感器保险熔断,或使避雷器爆炸,导致事故的进一步扩大,因此应及时进行处理。
铁磁谐振一般发生在中性点不接地系统中。不同的谐波都可能形成谐振条件,因此有不同的现象,按频率不同可分为:
1、基波谐振 一相电压降低,另两相电压升高超过线电压;或两相电压降低,一相电压升高超过线电压,TV开口三角上有电压输出,发出接地信号;
2、高次谐波谐振 三相电压同时升高超过线电压;
3、分次谐波谐振 三相对地电压同时升高并做低频摆动。
铁磁谐振与单相接地故障的主要区别:
系统发生单相接地时,接地相电压降低,非接地相电压升高。若接地点为金属性直接接地,接地相电压为零,其他两相升高为线电压,若PT开口三角形回路装有消谐灯,此时消谐灯很亮。
谐振时,三相电压可超过线电压,三相电压无规律变化,消谐灯随谐振程度不同而亮度不同。
若相电压有两相升高很多(超过线电压),开口三角形电压大于33V,或消弧线圈上无电流,则可判断为谐振;若一相电压降低,另两相电压升高不超过线电压且线电压正常,可判断为系统单相接地。电压表有低频无规律摆动现象可判断为谐振。
一般在二次装消谐装置或一次加消谐电阻或电抗
系统的中性点不接地系统,当系统遭到一定程度的冲击扰动,从而激发起铁磁共振现象。由于对地电容和互感器的参数不同,可能产生三种频率的共振:基波共振、高次谐波共振和分频谐波共振。
各种共振的表现形式如下:
基波共振。系统二相对地电压升高,一相对地电压降低。中性点对地电压(可由互感器辅助绕组测得电压)略高于相电压,类似单相接地,或者是二相对地电压降低,一相对地电压升高,中性点有电压,以前者为常见。
分频谐波共振,三相电压同时升高,中性点有电压,这时电压互感器一次电流可达正常额定电流的30~50倍以致更高。中性点电压频率大多数低于1/2工频。
高次谐波共振,三相电压同时升高,中性点有较高电压,频率主要是三次谐波。
在正常运行条件下,励磁电感L1=L2=L3=L0,故各相对地导纳Y1=Y2=Y3=Y0,三相对地负荷是平衡的,电网的中性点处于零电位,即不发生位移现象。
但是,当电网发生冲击扰动时,如开关突然合闸,或线路中发生瞬间弧光接地现象等,都可能使一相或两相对地电压瞬间升高。如果由于扰动导致A相对地电压瞬间升高,这使得A相互感器的励磁电流突然增大而发生饱和,其等值励磁电感L1相应减小,以致Y1≠Y0,这样,三相对地负荷变成不平衡了,中性点就发生位移电压。如果有关参数配合得当,对地三相回路中的自振频率接近于电源频率,这就产生了严重的串联谐振现象,中性点的位移电压(零序电压)急剧上升。
三相导线的对地电压UA、UB、UC等于各相电源电势与移位电压的向量和,当移位电压较低时向量迭加的结果可能使一相对地电压升高,另外两相则降低;也可能使两相对地电压升高,另一相降低。一般以后者为常见,这就是基波谐振的表现形式。
电压互感器的一组二次侧绕组往往接成开口三角形式,当线路发生单相接地时,电力网的零序电压(即中性点位移电压)就按比例关系感应至开口三角绕组的两端,使信号装置发出接地指示。显然在发生上述铁磁谐振现象时,位移电压同样会反映至开口三角绕组的两端,从而发生虚幻接地信号,造成值班人员的错觉。
由模拟试验中得出,分次谐波谐振时过电压并不高,而电压互感器电流极大,可达额定电流的30~50倍,所以常常使电压互感器因过热而爆炸。基波谐振时过电流并不大,而过电压较高。高次谐波谐振时,一般电流不大,过电压很高,经常使设备绝缘损坏。
三次谐波电压的产生可以认为是由电压互感器的激磁饱和所引起的。如中性点绝缘的电源对三相非线性电感供电。由于未构成三次谐波电流的通路,故各相中出现三次谐波电压,并在辅助绕组开口三角处产生各相三次谐波电压合成电压。当不大的对地电容与互感器并联形成振荡回路,其振荡回路的固有频率为适当数值时将引起甚高的三次谐波过电压。三次谐波共振的发生,需要足够高的运行电压,因为电压低时互感器饱和甚微,它所含的三次谐波将极校基频情况下的电压升高,是因为随铁心电感饱和程度不同,合成导纳可能呈电容性或电感性。回路中电流变化时,合成导纳的数值和相位将显著变化,显然随三相线路各相中电压电流数值不同,各相合成导纳的数值和相位差别将很大,因而引起中性点位移,并使某些相电压升高。
在分次谐波谐振时,三相电压同时升高;在基波谐振时,两相电压升高,一相电压降低;在三次谐波谐振时三相电压同时升高。
铁磁谐振:电力系统中的铁芯电感元件与电容元件构成共谐条件时,激发持续的铁磁谐振,使系统产生谐振过电压。其产生的原因主要有:
1、由线路接地、断线、断路器非同期合闸等引起的系统冲击及元件参数改变;
2、切、合空载线路、母线或系统扰动激发铁磁谐振;
3、系统在某种特殊运行方式下,参数匹配,达到了铁磁谐振条件;
4、断路器合闸三相不同期;
5、电压互感器高压保险熔断等。
铁磁谐振使得电流大大增加,电压超限,严重时将损坏设备绝缘,造成电压互感器保险熔断,或使避雷器爆炸,导致事故的进一步扩大,因此应及时进行处理。
铁磁谐振一般发生在中性点不接地系统中。不同的谐波都可能形成谐振条件,因此有不同的现象,按频率不同可分为:
1、基波谐振 一相电压降低,另两相电压升高超过线电压;或两相电压降低,一相电压升高超过线电压,TV开口三角上有电压输出,发出接地信号;
2、高次谐波谐振 三相电压同时升高超过线电压;
3、分次谐波谐振 三相对地电压同时升高并做低频摆动。
铁磁谐振与单相接地故障的主要区别:
系统发生单相接地时,接地相电压降低,非接地相电压升高。若接地点为金属性直接接地,接地相电压为零,其他两相升高为线电压,若PT开口三角形回路装有消谐灯,此时消谐灯很亮。
谐振时,三相电压可超过线电压,三相电压无规律变化,消谐灯随谐振程度不同而亮度不同。
若相电压有两相升高很多(超过线电压),开口三角形电压大于33V,或消弧线圈上无电流,则可判断为谐振;若一相电压降低,另两相电压升高不超过线电压且线电压正常,可判断为系统单相接地。电压表有低频无规律摆动现象可判断为谐振。
相关问答:
#13373999305#:电力系统发生铁磁谐振有哪些危害?
蓍轰会: 铁磁谐振引起的谐振过电压和过电流会引起变压器或互感器的温度升高和绝缘损坏,并对系统内的其他电力设备造成一定的冲击,严重威胁电力系统的安全稳定运行。